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Abstract. W e  show that Darboux transformations can be used to find explicit s- 
iutionr oi dei0rme.i eqaatio-a dhick. have recentiy heen bund riirougii zhe inverse 
method wr?h a variable spectral parameter. We constmct in particular the soliton 
rolutiin of the defamed Max~~eLl-Bloch equations, a d  aalyyse its asymptotic be- 
haviour. 

1. gntmduetion 

The inverse lnethod of solving nonlinear partia! differential equations was generalized 
in [lj to the case o f a  variable spectral parameter. This extension of the usual inverse 
method gave rise [I] to a nev seriei; of completely integrable nodinear equations, and 
to interesting integrable deformations of known nonlinear equations$. Reference [l] 
did not provide, however, any practical method of integrating the new equations. In 
this articie [4] we therefore propose a simple algebraic method of integration which 
is applicable to the new deformed equations. The method we use here is a modified 
version [4] of the Darboux transformation (DT) method which has been successfully 
applied to a number of completely integrable eqnztions [2-5, 9, 201. An alternative 
method b a e d  on a finitely-many gaps integration has been proposed in [6]. 

In the inverse method the nonlinear equalion to be solved appears as the compat- 
ibility condition of an auxiliary linear problem 

& = U 4  &=V* (1 1) 
where ?I, E (a/&)+ etc, and matrices U and 1' have only simple poles in the complex 
A-plane, 

t Permanent addreas: Department of TheoietidPhssicr, Leningradfnstituteofiiine Mechanics.md 
Optics, 197101 Leningrad, USSR, 
I I t  is worth mentioning that the gemralization of the traditiaual invcmc problem method for the 
non-isosprctral scatterinzproblems have been studied in 111: ind [1Z]. In this article we consider the 
*?se of both space a d  time deppendeace of the rpecirri paranitu. 
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The spectral parameter A can now depend on space and time variables z , t ,  and on a 
hidden spectral parameter z : X = A(z , t , t ) .  Also the poles of the matrices U and V 
are dependent on I and t :  vn = u,(s,t), pn = pn(z>t ) .  The spectral parameter A is 
found [I] to satisfy 

and therefore the poles vn, p, satisfy [l] 

where 

The compatibility condition of system (1.1) is 

lJe - V, i [U, V ]  = 0. 

( 1 . 4 ~ )  

(1.5) 

We demand this condition to be satisfied identically for A and the linearly independent 
factors (A - vn)-' and (A - /A,)-'. Derivativcs with respect to the spectral parameter 
in (1.5) will result in new terms as compared with those appearing in the usual inverse 
method. 

We shall next formulate the UT method of integration. Let ($, , q5,)= be the solu- 
tion of system (1.1) corresponding to the spectral parameter A, A ( z , t , z , ) ; ~  = 1,2.  
K we deAne the matrices A, a, P, and Q, such that 

then the system (1.1) can be expressed in the form 

NI 
' i ' ,=U, .a+~u,xaPn 

n=i  

.?I', 
at = V0@ + V,@Q, 

*=I 

(1.7) 

The UT method is based on the fact that system (1.7) is covariant withresp_ect 
to linear transformations Q + & = C[Q]. Also the transformed matrices U,, V,; 
n = U, 1, . . ,NI,  m = 0, I , .  . , Na,  will satisfy equation (i.5). 
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We consider a particularly simple ansatz for the linear transformation C, for which 

B = S,*A -+ S,Q (1 8) 

where matricerj So 2nd S, act as free parameters. Under transformatLon (1.8) equa- 
tions (1.7) should transform by covanance into 

(1.9) 

By substituting (1.8) into (1.9) and demanding that the resulting equations should be 
satisfied identically for BA", QP, and +Q,, we arrive at equations 

and 

(1.11) 

In deriving equations (1.10) and (1.11) rre have used equation (1.3) and the simple 
relationships 

The matrices So and 5, are k e d  by specific choices for the linear transformation 
C. We consider here the case 6 = 0, which is satisfied for specific solutions of lhe 
auxiliary linear problem, B. = eo, h = A,, 

&ere linezrly hiependent (Gj0, +,')=, j = 1.2 are to be chosen. The condition 8 = 0 
mzans simply that, through (I e),  

(1.14) S, = -So9,hOB.P, 1 

and So wili be defined by normalization which is to be chosen for each particular 
system. For a given seed solution {U,, Vm] of (1.5), and the correspondiig matrix 
function eq_uatioos (i.10) and (1.11) together with (1.8) and (1.14) will provide % 

new sohtiou {U-, V,,) of (I ti), and, at the same time, a solution of equation (1.9). 
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2. Deformed Mamvell-BBocla equations 

The system of Maxwell-Bloch (MB) equations [?I, 
E,,=P pc = N E  

Nf -k $(E?+EpP) = 0 

has been used to for example describe self-inducebtransparency (SIT) of a dispersive 
medium for coherent puise propagation. Eere j, E denote the compiex conjugate of 
p ,  E. In SIT E is the complex electric field amplitude, p is the induced (complex) 
polarization and N is the normalized population inversion of the medium, 

In [l] a number of completely integrable deformations of equation (2.1) were re- 
ported; we consider here one of physical interest, i.e. 

E,, = p pc = N E -  Zp 
(2.2) Ne + ;(E? +Ep) = 4c- ad. 

Bere functions c and E are determined by equations 

E? = 0 cc + 2cz = 0. 
We may think of the deformed equation (2.2) as describing a coherent pulse propag+ 
tion in a dispersive medium consisting of two-level atoms, including relaxation rate Z 
and ~ouree of inversion 4c T i e  reisation raie and source of inversion are connected 
in  a non-tri-dial "ay through equation (2.3). 

The linear system associated with equation (2.2) is [l] 

me = U1CA + U@ d, = &iQP 12.4) 
where 

N = ;(a f E )  

A, = 4cP 

(us is Pauli's matrix). 
The ma6rices A and P satisfy [l] equations 

Pc = EP. 
We can now apply to system (2 2)-(2 6) the DT method described in section 1. In 

this way we find 

sou1 = QS, ~~ - 

i', = s,u,s;' +SICS;' 

0, = s,u,s;;~ -1- [si, ~ ~ 1 s ; ~  + S,,,S,-' - Er 

j = s,&is,-' + 4esns;1 

(2.7.) 

(2.76) 
snq = 0 

(2 8 4  

,j = s,,$s;' + 4S1,S,-l. (2.86) 
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This set of equations corresponds to equations (i.lO)-(i.li) If we couslder the 
case when E is coustant, then equation (2 7b) gives immediately the solution for S,, 

S, =§,(E) = I e'€. (2.9) 

In order to proceed further we use the fact that, acting on the set of solutions of 
the linear system (2.4), there is a group of automorphkm which has the generating 
transformation 

Transformation (2.10) allows us to take the seed soiution (1.13) in the form 

(2.10) 

(2.11) 

It can be eady  seen by difiermtiatmg det @o with respect to < and 7 that Lhis 
determinant can be chosen to be non-zero and, therefore, the matrix e, is invertible 
for X = X i .  The corresponding matrix spectral parameter A is now 

where Ax 
specifies the seed solution. 

X((,v,+), and zl is the value of the hidden spectral parameter which 

Equations (2.3) and (2.6) are easily solved for constant E to give 

Equations (2.76) and (2.8b) can now he solved in terms of (2.11) and (2 12) In 
this way we find the Darboux drsssiug expressions for the electric field amplitude E ,  
polarization p and inversion N, 

(2.14O) 

(2.146) 

(2 14c) 

where E ,  N, p comprise the seed solution io be found from equation (2.2). The solution 
for the electric field ampiilude (2.140) gives immediately the euergy density of the 
electric field, 
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It is straightforward to work out the Darboux dressing equations for an N-step 
iteration. We give these equations in the appendix. 

Thanks to its algebraic nature the DT method allows wide classes of soiutions to be 
built up, generally in an arbitrary background, which is advantageous in the explicit 
computations. As far as the MB system is concerned, some examples of successful 
application of the DT formalism can be found in [4, 5 ,  81 where soliton solutions in 
periodic and constant backgrounds are considered. In a forthcoming publication we 
will consider the question of an optical pulse with a background of a finitely-many 
gaps potential hy Darboux dressing of the corresponding @-function [6]. The question 
of the interaction of an optical pulse with a spontaneous radiation field is investigated 
by means of the DT method in [a]. 

The simplest seed solution of equation (2.2) IS that for zero electric field, 

,', <*, 
{'.'U, 

When this seed solution is used in the auxiliasy linear problem (2.4), we find that 

+ 1 -  - 1 e 6 ( c ~ ~ :  d1 = c2e-%q) (2 37) 

where c , , ~  are constants and 

8([,77) = -[(2e0q + z1)112 - zI1@] + T1(2coq + z1)1/2(1 -e-"). (2.18) 
MO 
4c0 

The result (2.14.~) now means that a non-zero electric field amplitude satisfying 
e;luations (2.2) is 

(2.19) 

Corresponding expressions for the polarization and inversion %re easily found from 
(2.14b) and (2.14~) 

(2.19a) 

(2.196) 

Here N has the value (2.16). 
it is easy toshow that for e, = 5 = 0 solution (2.19) is the usual one-soliton solution 

O ~ S I T  in the case of an infinit,ely narrow line width [7]. Indeed, taking zI11' = a+iP, 
we get 
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In order to analyse the solution (2 19) in more detail we shall make the transfor- 
mation to the real space variables a,t: 

where QZ = 2nh-1n0w0pa, and c is the velocity of light. Hero no is the densxty of the 
two-level atoms, Two is the energy difference between the levels and p is the dipole 
momentum. We then find from (2.19) that, asymptotically when t -+ CO, the group 
veiocity of the e~ec~romagne~~e pnjse 'Dehav- as 

(2.21) 

The group velocity of the pulse approaches thus the velocity of light In the same 
limit t -+ CO, the width in space At of the pulse is asymptotically 

(2.22) 

where K(') is the fixed phase xc1! = 6 + 8 + $a. Similarly the point of maximum 
amplitude of the pulse (2 19) moves in the at plane along the asymptotic trajectory 

(2.23) 

Finally it should be noted that, in the limit t - 00, the exponential factor 
exp(-E() = exp (--EQ(t - ( t / c ) ) )  tends to one and, therefore, the amplitnde of the 
pulse (2.19) diverges as @la 
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Appendix 

In this appendix we derive the Darbonx dressrng equations for an N-step iteration. 
To this end we have l o  generalize ansatz (1.8) such that we assume 

One can now proceed in the same way as in section 2 for the onestep iteration. 
Inserting ansatz (AI)  into equation (2.4) we find that the followlug relationships must 
be satisfied: 
SOUi = VISO 

U,[H] = §,UaS;' +SAN,§;' 

U,[Nj = ,Ug§;' +sjC§>:' -E[M - j y +  [sj+::U:]sj-1 

0 < j < P I  - 1 ( A V  



B[N] = sj-lps;21 + 4S1,S;_', + 4c(N - 3 i 2)s1-2s;:1 

we stili have to define. 

2 G j S N .  

These equations will determine the dressed variables in terms of matrices SI which 

First we choose a set {*-,Am}:=', 

of solutions of the auxiliary linear problem. As before A, is the matrix spectral 
parameter related to Sm. We then sei 

&[N]lA=n,,*.=m, = 0 n = 1,. . . , N .  (A5) 
In terms of the solutions (A4) equation (AS) can be expressed in the form 

N 

A:-J(a#" i b J Q d  = -A:+" 

LAxn"-j(cj& i d,d") = -A, 4%. 
(AS) 

J=1 
for ?2 = 1 , 2 , .  . . , 2 N  

N 
N 1 

j=1 

In deriving equation (A6) we have used the result 

So = diag(ra,, do)eENF (AV 

s 0 -  - I (As) 

which can be easily found from equation (A2).  Because So is only a normalizing factor 
we can choose it to be 

Equation (A6) can be solved by, for example, the Cramer's rule and we find 

where 
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In order to save the involution property of the system (2.4) together with (2 5), 
n e  should choose, as in expression (2.!9), the matrix Q, of the fixed solutions of the 
auxiliary problem in the form 

and the associated matrixspectral parameter in the form 
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